A fast algorithm for solving the Sylvester structured total least squares problem
نویسندگان
چکیده
In this paper, we develop a fast structured total least squares (STLS) algorithm for computing an approximate greatest common divisor (GCD) of two univariate polynomials. By exploiting the displacement structure of the Sylvester matrix and applying the generalized Schur algorithm, each single iteration of the proposed algorithm has quadratic computational complexity in the degrees of the given polynomials. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Fast Implementation of Low Rank Approximation of a Sylvester Matrix
In [16], authors described an algorithm based on Structured Total Least Norm (STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given degree. For their algorithm, the overall computation time depends on solving a sequence least squares (LS) problems. In this paper, a fast implementation for solving these LS problems i...
متن کاملFast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm
The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 87 شماره
صفحات -
تاریخ انتشار 2007